
Coarsening of “clouds” and dynamic scaling in a far-from-equilibrium model system

D. A. Adams, B. Schmittmann,* and R. K. P. Zia
Center for Stochastic Processes in Science and Engineering, Department of Physics, Virginia Tech,

Blacksburg, Virginia 24061-0435, USA
�Received 4 January 2007; published 30 April 2007�

A two-dimensional lattice gas of two species, driven in opposite directions by an external force, undergoes
a jamming transition if the filling fraction is sufficiently high. Using Monte Carlo simulations, we investigate
the growth of these jams �‘‘clouds’’�, as the system approaches a nonequilibrium steady state from a disordered
initial state. We monitor the dynamic structure factor S�kx ,ky ; t� and find that the kx=0 component exhibits

dynamic scaling, of the form S�0,ky ; t�= t�S̃�kyt
��. Over a significant range of times, we observe excellent data

collapse with �=1/2 and �=1. The effects of varying filling fraction and driving force are discussed.

DOI: 10.1103/PhysRevE.75.041123 PACS number�s�: 05.70.Ln, 68.43.Jk, 64.60.Cn

I. INTRODUCTION

The study of phase separation and coarsening in systems
undergoing continuous or first-order phase transitions has a
long history in physics and materials science �1–4�. A model
system, like an Ising lattice gas, or a real alloy, like a mixture
of tin and lead, is prepared in a high-temperature state and
then suddenly quenched below its coexistence curve. As the
system phase separates, its properties are dominated by the
morphology of growing single-phase domains. A particularly
interesting feature of many phase-ordering systems is dy-
namic scaling: if space and time are appropriately rescaled,
growing domains at different times are found to be statisti-
cally self-similar, and the characteristic domain size R�t�
grows as a power of time t�. More detailed information is
contained in the equal-time two-point correlation function, or
equivalently the structure factor, which are generalized ho-
mogeneous functions of space and time. For systems evolv-
ing toward terminal equilibrium states, the domain growth
exponent � and the scaling behavior of correlation functions
are fundamentally well understood �3�.

The situation is very different for many-body systems
evolving toward nonequilibrium steady states �NESSs�.
Maintained far from equilibrium by some external force, for
example couplings to multiple energy or particle reservoirs,
these systems carry nonzero fluxes. As a result, their station-
ary distributions lie outside the Boltzmann-Gibbs framework
and are known only for a few special cases. Yet nonequilib-
rium systems occur frequently in nature, particularly in many
biological contexts. Not surprisingly, they display much
richer behaviors than systems in thermal equilibrium �5,6�,
including a variety of pattern-forming instabilities and first-
order phase transitions, controlled by the external drive
rather than a temperature variable. However, rather little is
known about coarsening phenomena in such systems. Given
that the underlying dynamics violates a very fundamental
symmetry of equilibrium systems, namely, detailed balance,
it is not immediately obvious whether features such as dy-
namic scaling or power law growth will persist when sys-
tems evolve toward terminal states which fall into the NESS
class.

As a first step toward a better understanding of coarsening
in such systems, it is instructive to investigate a few simple
models, in the hope that these will generate insights from
which a more general theory can be built. Looking for can-
didates that fall into the NESS class, which are well charac-
terized in other sectors of their phase diagram and exhibit
coarsening in some parameter regime, we are naturally led to
driven diffusive systems �5,7�. These systems involve one, or
several, species of particles, diffusing on a lattice subject to a
differential bias and short-range interactions. Both the proto-
type, first introduced �7� as a deceptively trivial modification
of the Ising lattice gas, and its variants display many surpris-
ing and counterintuitive phenomena �5�. A particularly inter-
esting modification involves models with two particle spe-
cies driven in opposite directions �8–10� where “jamming”
transitions emerge from biased diffusion alone.

Let us very briefly survey earlier studies of domain
growth and dynamic scaling in driven diffusive systems. The
prototype model, an Ising-like lattice gas in which the par-
ticles are “charged” and driven by an external “electric” field
E, sustains a nontrivial particle current on a fully periodic
lattice. Still, the order-disorder transition of the undriven sys-
tem survives, separating a disordered phase from a low-
temperature phase which phase-separates into high- and low-
density strips, aligned with the drive. If the system is
quenched from a typical high-temperature state into the
phase-separated sector of the phase diagram, coarsening of
single-phase domains occurs �11,12�. Some interesting mor-
phological discrepancies between simulation data and results
from a continuum theory �11� were eventually resolved �13�.
Turning to two-species models, the onset of jamming sepa-
rates a homogeneous, high-current phase from a spatially
inhomogeneous, low-current phase. As in the single-species
case, the jams take the form of strips of high particle density,
but these are now aligned transverse to the field direction. At
the late stages of the approach to the steady state, the system
typically exhibits several strips which coarsen until only a
single strip remains in the long-time limit.

Earlier work on dynamic properties has mostly focused on
these late stages. Since the strips are �on average� uniform in
the transverse direction, they are quite well described by a
set of mean-field equations, in one space dimension and time
�9,14�. If the excluded volume constraint is enforced rigor-*Electronic address: schmittm@vt.edu
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ously, so that the particles are not allowed to swap places, the
strips coarsen logarithmically slowly �14,15�. Another group
of studies investigates systems where the microscopic dy-
namics is already restricted to one �16,17�, or quasi-one
�18,19�, dimension. For interesting behavior to occur,
particle-particle �“charge”� exchanges must be permitted, al-
beit with a small rate, compared to particle-hole exchanges.
Provided the model parameters are chosen appropriately,
compact particle clusters form easily, and coarsen until a
single large cluster remains. By virtue of the charge ex-
change process, power law growth dominates here.

In this paper, we present a study of fully two-dimensional
coarsening in a two-species model with a strict excluded vol-
ume constraint. Starting from an initially disordered configu-
ration, the system parameters �density, bias� are chosen so as
to favor a jammed phase. Almost immediately, small
“clouds” �Fig. 1� of locally jammed particles form. The
larger clouds then grow, at the expense of the smaller ones,
until a large cloud percolates along the transverse direction,
forming a strip. Eventually, several strips emerge and com-
pete with one another, on much slower time scales. We focus
on the multicloud regime, long before the late-stage strip
coarsening regime sets in. We monitor the equal-time struc-
ture factor S�k , t�, as a function of wave vector k and time t,
averaged over initial conditions and system histories. A range
of system sizes, densities, and E values are studied. Since the
field selects a specific direction, the y axis, it is not surprising
that the structure factors are anisotropic in kx and ky. More
remarkably, we find that the system exhibits good dynamic
scaling in ky and t, provided kx is fixed at kx=0. Assuming

the scaling form S�0,ky , t�= t�S̃�ky / t��, the scaling exponents
are found to be �=1/2 and �=1. For nonzero values of kx,
or in the full �k , t� domain, we have not been able to achieve
good data collapse.

This paper is organized as follows. We first present the
model, a set of diagnostic observables, and some technical
details of the simulations. Next, we discuss our simulation
results and evidence for dynamic scaling. We conclude with
some comments and open questions.

II. THE MODEL AND ITS OBSERVABLES

Our model is defined on a two-dimensional square lattice
of size Lx�Ly with fully periodic boundary conditions. Two
species of particles, referred to as “positive” and “negative,”

reside on the sites of the lattice, subject to an excluded vol-
ume constraint. Hence, a given configuration of the system
can be labeled by a set of occupation variables ��r�, taking
the values 0, +1, and −1 if the site r= �x ,y� is empty or
occupied by a positive or negative particle, respectively. The
particles experience no interactions, apart from respecting an
excluded volume constraint. For simplicity, we restrict our-
selves to systems that are neutral: �r��r�=0. For later refer-
ence, we also define the particle �as opposed to charge� oc-
cupation n�r� via

n�r� = ���r�� , �1�

so that the total particle density �“mass”� m is given by
m= �LxLy�−1�rn�r�.

In the absence of the driving force, the particles perform
simple diffusion, i.e., jump with equal probability to a ran-
domly selected nearest-neighbor site, provided it is unoccu-
pied. As a result, there is no net current �of either mass or
charge� through the system, and the steady state is spatially
uniform. In contrast, an “electric” field, applied in the posi-
tive y direction, biases positive and negative particles in op-
posite directions. In our simulations, a bond is selected at
random and the occupancies of the two associated sites are
checked. If the bond carries a particle-hole pair, an exchange
will always be made if this results in a positive �negative�
particle moving in the transverse or positive �negative� y
direction; otherwise, the exchange is attempted with rate
exp�−E�. Clearly, this dynamics is translation invariant and
invariant under charge-parity transformation ��→−� ,y→
−y�. We use a random sequential dynamics, with one Monte
Carlo step �MCS� corresponding to Lx�Ly update attempts.
All runs start from a random initial condition.

The system sizes studied ranged from 100�100 to 3200
�3200. The density varied from m=0.3 to 0.7. We also con-
sidered different values for the probability for a particle to
move backward. Our reference system, for which the largest
data set was collected, is an 800�800 lattice, with m=0.5
and E=10. The latter gives a probability of 4.5�10−5 for
backward jumps, which is zero for all practical purposes.
Runs lasted at least 8196=213 MCSs, and data are typically
averaged over 1000 runs, unless stated otherwise. Time is
measured in MCSs.

The final stationary state of the system is well understood.
For sufficiently large particle density m and field E, the sys-
tem displays a single strip of particles, transverse to the field
direction �8�. In that fashion, translational symmetry is spon-
taneously broken. The strip itself is charge segregated, with
positive �negative� particles occupying sites with lower
�higher� y coordinates. The interior interface �separating
positive from negative particles� is glassy, due to the absence
of any charge exchanges. In contrast, the exterior interface
�separating particles from holes� is quite smooth, since its
fluctuations are controlled by suppressed particle moves, i.e.,
by the parameter exp�−E�. This parameter also controls the
density of particles in the remainder of the system, reminis-
cent of a gas-liquid interface under gravity. Due to the peri-
odic boundary conditions, however, a small current flows,
even in the jammed phase, limited by exp�−ELy�. A simple

(a) (b) (c)

FIG. 1. �Color online� Snapshots of an 800�800 system, at
t= �a� 1024, �b� 4096, and �c� 16 384, in units of MCSs. E=10.
Positive �negative� particles are black �white�; holes are blue.
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mean-field theory allows us to compute average density pro-
files, currents, and the phase diagram, in good agreement
with the simulations �8–10�.

In the following, we will always choose system param-
eters such that the system evolves toward an inhomogeneous,
jammed final state. Starting from a random initial disordered
configuration, small jams of positive and negative particles
form very rapidly, due to local density fluctuations. Some of
these, typically the larger ones, will collect more particles
and grow, while others shrink and dissolve, as illustrated in
Fig. 1. We refer to this stage as the coarsening of clouds, or
clusters. Eventually, first one and then several of the largest
clouds will span the lattice in the transverse direction, and
the evolution is no longer dominated by the coarsening of
well-separated clouds. Now, multiple strips compete for par-
ticles until only a single one remains, and the system has
reached its steady state.

In this study, the characteristic shapes and separations of
the clusters are of interest. Thanks to translational invariance,
a suitable observable is the equal-time structure factor, de-
fined through the Fourier transform of the local occupation,

S�kx,ky ;t� =
1

LxLy
���

x=0

Lx

�
y=0

Ly

n�x,y ;t�ei�kxx+kyy��2	 �2�

where kx=2�l /Lx, l=0,1 , . . . ,Lx−1, and ky =2�j /Ly, j
=0,1 , . . . ,Ly −1. Here, n�x ,y ; t� denotes the local occupation
of site �x ,y� at Monte Carlo time t. The average 
¯� is taken
over multiple runs, using configurations recorded at the same
Monte Carlo time. All initial conditions are random.

Let us first establish a few properties of this structure
factor. The value at the origin is easily found:

S�0,0� =
1

LxLy
���

x,y
n�x,y��2	 = m2LxLy . �3�

Further, S is related to the two-point correlation function
G�x ,y��
n�x ,y ; t�n�0,0 ; t�� via

S�kx,ky ;t� = �
x,y

G�x,y�ei�kxx+kyy�, �4�

which also provides us with the sum rule

�
kx,ky

S�kx,ky ;t� = mLxLy . �5�

Finally, it is useful to evaluate S for a few special cases,
including the initial and final configurations. Since the time
argument is inessential here, it will be suppressed for now. If
the system is filled randomly with particles, at density m, the
structure factor is easily found to be

S�kx,ky� = m�1 − m��1 + O„1/�LxLy�…� + m2�LxLy��kx,0�ky,0.

�6�

Clearly, S�kx ,ky� is uniform for all nonzero k��kx ,ky�.
For comparison, we also evaluate the structure factor for a

perfectly ordered single strip which reflects the stationary
state, modulo fluctuations:

S�kx,ky� =
Lx

Ly
�kx,01 − cos�mkyLy�

1 − cos ky
� . �7�

These expressions provide a few benchmarks for the simula-
tion data presented below.

III. SIMULATION RESULTS AND TESTS
FOR DYNAMIC SCALING

A. Unscaled structure factors

In this section, we first present Monte Carlo data for raw
�unscaled� structure factors. We have collected data for a
wide range of k. Roughly speaking, the k value of the peak
position reflects a characteristic spacing of the growing clus-
ters, while the peak width carries information about fluctua-
tions. For illustration purposes, we show two projections
here, namely, S�0,ky ; t� and S�kx ,0 ; t� �Fig. 2�. Plotted vs ky,
the data for S�0,ky ; t� show a distinct maximum which
moves toward smaller values of ky for later times. In con-
trast, S�kx ,0 ; t� is monotonically decreasing in kx, for all t. A
fuller picture can be gleaned from contour plots of S�kx ,ky ; t�
which indicate that, even for the earliest times considered
�t�50 MCSs�, the maximum of S is found on the kx=0 axis.
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FIG. 2. �Color online� Unscaled structure factors S�0,ky ; t� �a�

and S�kx ,0 ; t� �b� for an 800�800 system, at E=10. The different
curves correspond to different values of j �a� and l �b�, specified in
the legend. The notation is that of Eq. �2�. Time is given in units of
MCSs.
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As time progresses, the peak position shifts from larger val-
ues of ky to smaller ones, and the peak height increases.
These findings suggest that, as the first clouds emerge from
the fully disordered initial configurations, they quickly de-
velop a characteristic length scale in the field direction, but
remain disordered in the transverse direction.

B. Scaled structure factors

Snapshots of typical configurations at different times
�Fig. 1� show clusters of particles �clouds� which grow in
both the parallel and the transverse directions. If a simple
rescaling of system size renders configurations, recorded at
different times, statistically similar, we can hope for dynamic
scaling, as illustrated by Fig. 3. After an appropriate rescal-
ing of Figs. 1�b� and 1�c�, Fig. 1�c� is plotted inside Fig. 1�b�
which is plotted inside Fig. 1�a�. One has to take a very
careful look, if one wants to discern the internal boundaries
�discontinuities� between the three pictures. This
illustrates—at a simple visual level—how closely they re-
semble one another, after rescaling. However, our visual
ability to detect scaling is easily deceived and provides, at
best, the motivation for a more quantitative study.

A quantitative test of dynamic scaling requires a careful
analysis of the structure factors. Assuming that characteristic
lengths in both directions increase as powers of time, but
with possibly different exponents due to the anisotropy in-
duced by the field, we first seek dynamic scaling in the form

S�kx,ky ;t� � t�f�kxt
�1,kyt

�2� �8�

where the � indicates that we should expect this form to
hold only for certain ranges of time and wave vector. The
sum rule Eq. �5� immediately leads to the exponent identity

�1 + �2 = � . �9�

If dynamic scaling holds, one should be able to determine a
set of scaling exponents in such a way that structure factor
data for different times and wave vectors collapse onto a
single curve if plotted according to Eq. �8�. However, we

have not been able to achieve satisfactory data collapse for
this general form. Once again this suggests that there are no
characteristic transverse length scales, associated with this
growth process. It also illustrates that merely visual tests of
scaling, such as Fig. 3, must be treated with some caution.

Turning to the remnant structures in S�0,ky ; t�, the data in
Fig. 2 show a sequence of curves of similar shapes, with the
maximum shifting to smaller ky for later times. Even if the
general form Eq. �8� is not obeyed, we can explore the pos-
sibility of dynamic scaling in the reduced space kx=0. In the
remainder of this paper, we focus on tests of

S�0,ky ;t� � t�f�0,kyt
�� . �10�

Figure 4 shows the scaling plot for a half-filled system for
times ranging from t=29=512 to t=213=8192. We find
excellent data collapse with the scaling exponents
�=0.50±0.02 and �=1.00±0.02. Much longer runs �with
poorer statistics� show that the data continue to collapse
well, until at least t�O�106�. Our value for �, the exponent
controlling the characteristic spacing of domains, stands in
stark contrast to its counterpart for conserved coarsening in
equilibrium systems. There, it takes the value 1/3, for a
simple scalar density such as ours.

The scaling function exhibits Gaussian behavior near the
maximum, and falls off as z−3, where z�kyt

� is the scaling
variable. This large-z behavior is highly reminiscent of the
Porod tail �20�, well known in the theory of domain growth
in equilibrium systems. There, it emerges from two essential
features, namely, first, the presence of a single �isotropic�
large length scale in the system, characterizing both the size
and the separation of the coarsening domains, and, second,
the existence of microscopically sharp domain walls. Here,
the situation is more complex. While we do observe sharp
domain walls between our clouds and the surrounding
�nearly� empty regions, our model is manifestly not isotro-
pic. What complicates the issue further is the absence of a

FIG. 3. �Color online� Scaled configurations from Fig. 1. See
text for details.
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FIG. 4. �Color online� Scaling plot for S�0,ky ; t� for an
800�800 system, at m=0.5 and E=10. Five different times, rang-
ing from t=512 to 8192, in units of MCSs, are shown. �=1/2 and
�=1. The solid line denotes a z−3 power law.
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characteristic spacing in the direction transverse to the field.
Clearly, a more careful study is required before the large-z
behavior of our model can be traced directly to a simple
Porod law. As for the small-z behavior, we hesitate to offer
any conclusions. Certainly, it does not appear to follow the k4

power law which would be expected for conserved coarsen-
ing in equilibrium systems �21�.

In the following, we probe the universality of the scaling
exponents, as we change system parameters such as the par-
ticle density or the driving force. First, we consider the effect
of system size. Since the scaling variable z defines a charac-
teristic length scale �	 t�, it is natural to expect a breakdown
of scaling when � becomes of the order of L, or when con-
sidering times t
L1/�. Indeed, scaling plots for a range of L,
with 200�L�566, confirm this expectation very clearly.
For example, in a 200�200 system, the data for t=1012

=4096 already deviate noticeably from the scaling curve,
whereas for L=566, such deviations are not observed until
t=215=32 768.

Next, we investigate the role of the overall particle den-
sity. For coarsening in conserved equilibrium systems, it is
well known that the scaling function depends on volume
fraction of the minority phase; however, the scaling expo-
nents describing the structure factor remain unchanged �22�.
Here, the situation is much more dramatic. Using the scaling
exponents �=1/2 and �=1, the data collapse for densities
close to half filling �m=0.40 and 0.55� is still acceptable, but
becomes progressively worse, for both larger �m=0.70� and
smaller �m=0.30� densities. Better data collapse can still be
achieved, but at the price of modifying the scaling expo-
nents. Figure 5 shows the scaled data, with appropriately
adjusted values of � and �. It is natural to assume that these
values reflect effective, rather than true asymptotic, expo-
nents. A better understanding of the scaling function would
be necessary to disentangle its m dependence from the over-
all scaling exponents.

We encounter a similar situation when considering the
effect of the driving force E. We find good data collapse,
with �=1/2 and �=1, as long as the rate for a particle to
move against its preferred direction, set by exp�−E�, remains
small. Once exp�−E� becomes comparable to 0.2, deviations
from scaling become noticeable. More work will be required
to shed light on these preliminary observations.

IV. CONCLUSIONS

To summarize, we have explored the possibility of dy-
namic scaling in a two-dimensional driven lattice gas, in-
volving two species of particles. Positive and negative par-
ticles preferentially move in opposite directions and form
small jams, due to an excluded volume constraint. Above a
certain threshold density, these jams coarsen until a single
strip of particles spans the system in the transverse direction.
For an extended period of time, this coarsening process
obeys dynamic scaling, provided we focus on characteristic
length scales in the longitudinal direction. Monitoring a
structure factor S�0,ky ; t�, we find very good data collapse
provided t−�S is plotted vs kyt

a. At and near half filling
�m=0.5� and for large driving force, we find �=0.50±0.02
and �=1.00±0.02. For smaller E and densities further away
from half filling, we believe that the scaling function ac-
quires a dependence on m and E. We note that we can still
achieve reasonable data collapse with the simple form given
above, but only at the price of adjusting the exponents � and
�. We believe that these effective exponents mask possibly
significant modifications to the scaling function.

Naturally, a better analytic understanding of the exponents
and of the scaling function would be desirable. It will be
interesting to see what future studies in both simulations and
analytics would reveal. The observation that � is essentially
1 /2 points toward a diffusive mechanism. Based on visual
inspection alone, the clusters evolve by exchanging particles

0.00001

0.0001

0.001

0.01

0.1

1

0.1 1 10 100

512
1024
2048
4096
8192

t �� S (0, k y ; t )

(a)

z
- 3

0.00001

0.0001

0.001

0.01

0.1

1

0.1 1 10 100

512
1024
2048
4096
8192

t ���� S (0, k y ; t )

(b)

z
- 3

0.00001

0.0001

0.001

0.01

0.1

1

0.1 1 10 100

512
1024
2048
4096
8192

t �� S (0, k y ; t )

(c)

z
- 3

0.00001

0.0001

0.001

0.01

0.1

1

0.1 1 10 100

512
1024
2048
4096
8192

t �� S (0, k y ; t )

(d)

z - 3

k y t
�

k y t
�k y t

�

k y t
�

FIG. 5. �Color online� Scaling
plots for S�0,ky ; t� for an
800�800 system, at E=10. Four
different densities are shown, and
the scaling exponents are adjusted
to give satisfactory data collapse:
�a� m=0.30, �=0.46, �=0.98; �b�
m=0.40, �=0.50, �=1.00; �c� m
=0.55, �=0.50, �=1.00; �d� m
=0.60, �=0.44, �=0.95. All er-
rors are at most 5%. The solid
lines denote z−3 power laws.
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with one another. If this process is truly random—i.e., a clus-
ter gains and loses particles with a fixed, constant rate—one
should indeed expect to find a diffusive growth of character-
istic length scales. Due to the drive, the particle exchange
occurs predominantly between clusters that are nearest
neighbors in the transverse direction; hardly any interactions
occur between nearest neighbors in the transverse direction.
This may explain the absence of any apparent structures in
kx. Work is in progress to analyze a well-established mean-
field theory for this model, in the hope of gaining a better

understanding of exponents and scaling function. If success-
ful, it should also elucidate the deviations and similarities of
our coarsening process with respect to those in equilibrium
systems.

ACKNOWLEDGMENTS

We have benefited from discussions with K. E. Bassler.
This work is supported in part by the NSF through Grant No.
DMR-0414122.

�1� J. S. Langer, Rev. Mod. Phys. 52, 1 �1980�.
�2� J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase Tran-

sitions and Critical Phenomena, edited by C. Domb and J. L.
Lebowitz �Academic, New York, 1983�, Vol. 8.

�3� A. J. Bray, Adv. Phys. 43, 357 �1994�.
�4� S. Puri, Phase Transitions 77, 407 �2004�.
�5� B. Schmittmann and R. K. P. Zia, in Phase Transitions and

Critical Phenomena, edited by C. Domb and J. L. Lebowitz
�Academic, New York, 1995�, Vol. 17.

�6� D. Mukamel, in Soft and Fragile Matter: Nonequilibrium
Metastability and Flow, edited by M. E. Cates and M. R.
Evans �Institute of Physics Publishing, Bristol, 2000�.

�7� S. Katz, J. L. Lebowitz, and H. Spohn, Phys. Rev. B 28, 1655
�1983�; J. Stat. Phys. 34, 497 �1984�.

�8� B. Schmittmann, K. Hwang, and R. K. P. Zia, Europhys. Lett.
19, 19 �1992�.

�9� I. Vilfan, R. K. P. Zia, and B. Schmittmann, Phys. Rev. Lett.
73, 2071 �1994�.

�10� M. Thies and B. Schmittmann, Phys. Rev. E 61, 184 �2000�.
�11� F. J. Alexander, C. A. Laberge, J. L. Lebowitz, and R. K. P.

Zia, J. Stat. Phys. 82, 1133 �1996�.
�12� E. Levine, Y. Kafri, and D. Mukamel, Phys. Rev. E 64,

026105 �2001�.
�13� A. D. Rutenberg and C. Yeung, Phys. Rev. E 60, 2710 �1999�.
�14� B. Schmittmann and M. Thies, Europhys. Lett. 57, 178 �2002�.
�15� J. Kertèsz and R. Ramaswamy, Europhys. Lett. 28, 617

�1994�.
�16� C. Godrèche, J. Phys. A 36, 6313 �2003�.
�17� S. Grosskinsky, G. M. Schütz, and H. Spohn, J. Stat. Phys.

113, 389 �2003�.
�18� J. T. Mettetal, B. Schmittmann, and R. K. P. Zia, Europhys.

Lett. 58, 653 �2002�.
�19� I. T. Georgiev, B. Schmittmann, and R. K. P. Zia, J. Phys. A

39, 3495 �2006�.
�20� G. Porod, Kolloid-Z. 124, 83 �1951�; 125, 51 �1952�. See

also, e.g., Ref. �3� for a thorough discussion.
�21� C. Yeung, Phys. Rev. Lett. 61, 1135 �1988�; H. Furukawa, J.

Phys. Soc. Jpn. 58, 216 �1989�; Phys. Rev. B 40, 2341 �1989�.
�22� M. Tokuyama and Y. Enomoto, Physica A 204, 673 �1994�; R.

Toral, A. Chakrabarti, and J. D. Gunton, ibid. 213, 41 �1995�.

ADAMS, SCHMITTMANN, AND ZIA PHYSICAL REVIEW E 75, 041123 �2007�

041123-6


